#### Convert polar equation to cartesian equation calculator

## How do you convert polar equation to Cartesian equation?

Summary. To convert from Polar Coordinates (r,θ) to Cartesian Coordinates (x,y) : x = r × cos( θ ) y = r × sin( θ )

## How do you convert polar equations to parametric equations?

Figure %: The x and y coordinates in the polar coordinate system See that sin(θ) = , and cos(θ) = . To convert from rectangular to polar coordinates, use the following equations: x = r cos(θ), y = r sin(θ). To convert from polar to rectangular coordinates, use these equations: r = sqrtx^{2}+y^{2}, θ = arctan( ).

## What is Cartesian equation?

: an equation of a curve or surface in which the variables are the Cartesian coordinates of a point on the curve or surface.

## What is a polar equation?

Polar Equations A polar equation is any equation that describes a relation between r r r and θ theta θ, where r r r represents the distance from the pole (origin) to a point on a curve, and θ theta θ represents the counterclockwise angle made by a point on a curve, the pole, and the positive x x x-axis.

## How do parametric equations work?

A curve in the plane is said to be parameterized if the set of coordinates on the curve, (x,y), are represented as functions of a variable t. Namely, x = f(t), y = g(t) t D. where D is a set of real numbers. The variable t is called a parameter and the relations between x, y and t are called parametric equations.

## What is a rectangular equation?

A rectangular equation, or an equation in rectangular form is an equation composed of variables like x and y which can be graphed on a regular Cartesian plane. For example y=4x+3 is a rectangular equation.

## Are Cartesian and rectangular coordinates the same?

The Cartesian coordinates (also called rectangular coordinates) of a point are a pair of numbers (in two-dimensions) or a triplet of numbers (in three-dimensions) that specified signed distances from the coordinate axis.

## How do you calculate polar and rectangular?

In general, to convert between polar and rectangular coordinates use the following rules: x = r cos(θ) y = r sin(θ) r = (x2 + y2)1/2.

## What is polar and rectangular form?

In Rectangular Form a complex number is represented by a point in space on the complex plane. In Polar Form a complex number is represented by a line whose length is the amplitude and by the phase angle.