# On Asplund functions

Commentationes Mathematicae Universitatis Carolinae (1999)

- Volume: 40, Issue: 1, page 121-132
- ISSN: 0010-2628

## Access Full Article

top## Abstract

top## How to cite

topTang, Wee-Kee. "On Asplund functions." Commentationes Mathematicae Universitatis Carolinae 40.1 (1999): 121-132. <http://eudml.org/doc/248382>.

@article{Tang1999,

abstract = {A class of convex functions where the sets of subdifferentials behave like the unit ball of the dual space of an Asplund space is found. These functions, which we called Asplund functions also possess some stability properties. We also give a sufficient condition for a function to be an Asplund function in terms of the upper-semicontinuity of the subdifferential map.},

author = {Tang, Wee-Kee},

journal = {Commentationes Mathematicae Universitatis Carolinae},

keywords = {Fréchet differentiability; convex functions; Asplund spaces; Fréchet differentiability; convex function; Asplund space},

language = {eng},

number = {1},

pages = {121-132},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {On Asplund functions},

url = {http://eudml.org/doc/248382},

volume = {40},

year = {1999},

}

TY - JOUR

AU - Tang, Wee-Kee

TI - On Asplund functions

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 1999

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 40

IS - 1

SP - 121

EP - 132

AB - A class of convex functions where the sets of subdifferentials behave like the unit ball of the dual space of an Asplund space is found. These functions, which we called Asplund functions also possess some stability properties. We also give a sufficient condition for a function to be an Asplund function in terms of the upper-semicontinuity of the subdifferential map.

LA - eng

KW - Fréchet differentiability; convex functions; Asplund spaces; Fréchet differentiability; convex function; Asplund space

UR - http://eudml.org/doc/248382

ER -

## References

top- Contreras M.D., Payá R., On upper semicontinuity of duality mappings, Proc. Amer. Math. Soc. 112 (1994), 451-459. (1994) MR1215199
- Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Pitman Monograph and Survey in Pure and Applied Mathematics Zbl0782.46019MR1211634
- Dulst D.V., Namioka I., A note on trees in conjugate Banach spaces, Indag. Math. 46 (1984), 7-10. (1984) Zbl0537.46025MR0748973
- Namioka I., Phelps R.R., Banach spaces which are Asplund spaces, Duke Math J. 42 (1975), 735-749. (1975) Zbl0332.46013MR0390721
- Fabian M., On projectional resolution of identity on the duals of certain Banach spaces, Bull. Austral. Math. Soc. 35 (1987), 363-371. (1987) MR0888895
- Godefroy G., Some applications of Simons' inequality, Sem. Funct. Anal., University of Murcia, to appear. MR1767034
- Giles J.R., On the characterisation of Asplund spaces, J. Austral. Math. Soc. (Ser. A) 32 (1982), 134-144. (1982) Zbl0486.46019MR0643437
- Giles J.R., Gregory D.A., Sims B., Geometric implications of upper semi-continuity of the duality mapping on a Banach space, Pacific J. Math. 79 (1978), 99-109. (1978) MR0526669
- Giles J.R., Sciffer S., Separable determination of Fréchet differentiability of convex functions, Bull. Austral. Math. Soc. 52 (1995), 161-167. (1995) Zbl0839.46036MR1344269
- Jayne J.E., Namioka I., Rogers C.A., $\sigma $-fragmentable Banach spaces, Mathematika 39 (1992), 161-188. (1992) Zbl0761.46009MR1176478
- Phelps R.R., Convex Functions, Monotone Operators and Differentiability, Lect. Notes. in Math., Springer-Verlag 1364 (1993) (Second Edition). Zbl0921.46039MR1238715
- Preiss D., Gâteaux differentiable functions are somewhere Fréchet differentiable, Rend. Cir. Mat. Pal. 33 (1984), 122-133. (1984) Zbl0573.46024MR0743214
- Preiss D., Zajíček D., Fréchet differentiability of convex functions in Banach space with separable duals, Proc. Amer. Math. Soc. 91 (1984), 202-204. (1984) MR0740171
- Simons S., A convergence theorem with boundary, Pacific J. Math. 40 (1972), 703-708. (1972) Zbl0237.46012MR0312193
- Stegall C., The Radon-Nikodym property in conjugate Banach spaces, Trans. Amer. Math. Soc. 206 (1975), 213-223. (1975) Zbl0318.46056MR0374381
- Tang W.-K., On Fréchet differentiability of convex functions on Banach spaces, Comment. Math. Univ. Carolinae 36 (1995), 249-253. (1995) Zbl0831.46045MR1357526
- Tang W.-K., Sets of differentials and smoothness of convex functions, Bull. Austral. Math. Soc. 52 (1995), 91-96. (1995) Zbl0839.46008MR1344263
- Yost D., Asplund spaces for beginners, Acta Univ. Carolinae 34 (1993), 159-177. (1993) Zbl0815.46022MR1282979

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.